DISCOVERY PROJECT

Designing a Roller Coaster

Suppose you are asked to design the first ascent and drop for a new roller coaster. By studying photographs of your favorite coasters, you decide to make the slope of the ascent 0.8 and the slope of the drop -1.6 . You then connect these two straight stretches $y=L_{1}(x)$ and $y=L_{2}(x)$ with part of a parabola

$$
y=f(x)=a x^{2}+b x+c
$$

where x and $f(x)$ are measured in feet. For the track to be smooth there can't be abrupt changes in direction, so you want the linear segments L_{1} and L_{2} to be tangent to the parabola at the transition points P and Q, as shown in the figure.

1. To simplify the equations, you decide to place the origin at P. As a consequence, what is the value of c ?
2. Suppose the horizontal distance between P and Q is 100 ft . To ensure that the track is smooth at the transition points, what should the values of $f^{\prime}(0)$ and $f^{\prime}(100)$ be?
3. If $f(x)=a x^{2}+b x+c$, show that $f^{\prime}(x)=2 a x+b$.
4. Use the results of problems 2 and 3 to determine the values of a and b. That is, find a formula for $f(x)$.
5. Plot L_{1}, f, and L_{2} to verify graphically that the transitions are smooth.
6. Find the difference in elevation between P and Q.
